Face Detection Using a Mixture of Factor Analyzers
نویسندگان
چکیده
منابع مشابه
Face Detection Using Mixtures of Linear Subspaces
We present two methods using mixtures of linear subspaces for face detection in gray level images. One method uses a mixture of factor analyzers to concurrently perform clustering and, within each cluster, perform local dimensionality reduction. The parameters of the mixture model are estimated using an EM algorithm. A face is detected if the probability of an input sample is above a predefined...
متن کاملTensor Analyzers
Factor Analysis is a statistical method that seeks to explain linear variations in data by using unobserved latent variables. Due to its additive nature, it is not suitable for modeling data that is generated by multiple groups of latent factors which interact multiplicatively. In this paper, we introduce Tensor Analyzers which are a multilinear generalization of Factor Analyzers. We describe a...
متن کاملFace Detection Using Mixtures of Linear Subspaces
We present two methods using mixtures of linear subspaces for face detection in gray level images. One method uses a mixture of factor analyzers to concurrently perform clustering and, within each cluster, perform local dimensionality reduction. The parameters of the mixture model are estimated using an EM algorithm. A face is detected if the probability of an input sample is above a predefined...
متن کاملFace Detection Using Multimodal Density Models
We present two methods using multimodal density models for face detection in gray-level images. One generative method uses a mixture of factor analyzers to concurrently perform clustering and, within each cluster, perform local dimensionality reduction. The parameters of the mixture model are estimated using the EM algorithm. A face is detected if the probability of an input sample is above a p...
متن کاملLearning local factor analysis versus mixture of factor analyzers with automatic model selection
Considering Factor Analysis (FA) for each component of Gaussian Mixture Model (GMM), clustering and local dimensionality reduction can be addressed simultaneously by Mixture of Factor Analyzers (MFA) and Local Factor Analysis (LFA), which correspond to two FA parameterizations, respectively. This paper investigates the performance of Variational Bayes (VB) and Bayesian Ying-Yang (BYY) harmony l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999